

Convert an Industry Leading Native
Mobile App to React Native

Project Plan

Team Number: sdmay19-02

Client: Buildertrend

Adviser: Mai Zheng

Victor Amupitan –– Chief Engineer of Design

Lucas Kern –– Executive Meeting Facilitator

Michielu Menning –– Lead Report Manager

Kyle Nordstrom –– Co-Team Lead/Meeting Scribe

Francis San Filippo –– Scrum Master

Walter Seymour –– Co-Team Lead/ Team Communications Leader

Team Email: sdmay19-02@iastate.edu

Team Website: https://sdmay18-01.sd.ece.iastate.edu

Revised: September 27th, 2018 / Version 1

SDMAY19-02 1

Table of Contents
Table of Contents 2

0.1 List of Figures 4

0.2 List of Tables 4

0.3 List of Symbols 4

0.4 List of Definitions 4

1 Introductory Material 4

1.1 Acknowledgement 4

1.2 Problem Statement 5

1.3 Operating Environment 5

1.4 Intended Users and Intended Uses 6

1.5 Assumptions and Limitations 6

1.6 Expected End Product and Other Deliverables 7

2 Proposed Approach and Statement of Work 8

2.1 Objective of the Task 8

2.2 Functional Requirements 8

2.3 Constraints Considerations 11

2.4 Previous Work And Literature 12

2.4.1 Existing Works 12

2.4.2 Relevant Literature 12

2.5 Proposed Design 12

2.6 Technology Considerations 14

2.7 Safety Considerations 15

2.8 Task Approach 15

2.9 Possible Risks And Risk Management 16

2.10 Project Proposed Milestones and Evaluation Criteria 17

2.11 Project Tracking Procedures 17

SDMAY19-02 2

2.12 Expected Results and Validation 18

2.13 Test Plan 18

3 Project Timeline, Estimated Resources, and Challenges 18

3.1 Project Timeline 18

3.2 Feasibility Assessment 19

3.3 Personnel Effort Requirements 20

Table 1: Major Tasks 22

3.4 Other Resource Requirements 22

3.5 Financial Requirements 22

4 Closure Materials 22

4.1 Conclusion 22

4.2 References 23

4.3 Appendices 24

SDMAY19-02 3

0.1 LIST OF FIGURES

*We will fill these later as they are added

● Figure 1: Principles of Component-Based Architecture
● Figure 2: Semester 1 Gantt Chart
● Figure 3: Semester 2 Gantt Chart

0.2 LIST OF TABLES

*We will fill these later as they are needed

● Table 1: Major Tasks

0.3 LIST OF SYMBOLS

*We will fill these later as they are needed

0.4 LIST OF DEFINITIONS
● BT: Buildertrend, our Client.
● Components: Unit of code that deals with a specific feature or

functionality. Components break apart the project into smaller subtasks.
● Component Based Development: A software development process that

emphasizes the separation of concerns throughout the project.
● DRY programming: Don’t repeat yourself programming (ie duplicating

logic)
● Front-end: The part of development that deals with converting data into a

graphical interface for users to interact with.
● Jake: Director of Software Development at Buildertrend.
● Native: Software that is developed for use on a particular platform or

device.
● React: A javascript library for building user interfaces.
● React Native: A framework for building native applications with React.
● React Router: Specifies the components that will be displayed with certain

routes.
● Redux: A predictable state container for JavaScript applications.
● SaaS: Software as a service
● Software Architecture: High level structures of a software system.

1 Introductory Material

1.1 ACKNOWLEDGEMENT

We would like to give a special thanks to the following members of Iowa State and
Buildertrend for the assistance they have provided throughout our project.

SDMAY19-02 4

● Rich Kalasky
● Daric Teske
● Mai Zheng

1.2 PROBLEM STATEMENT

The problem that Buildertrend currently faces is that the mobile application that they use
could be created in a better way. One problem is that they currently are updating and
maintaining two application, one for IOS and one for Android. Another problem is that
they need specialized developers to work on these that have IOS or Android development
experience. These skills are not necessarily common for Software Engineers, so it is a little
difficult to find these people. It also makes the software harder to maintain. Maintaining
two applications that are in more obscure languages is costing Buildertrend time and
money. They are looking for a way to save money, time, and make the overall
development process easier in the future.

For the solution, Buildertrend looked to us. They had the idea to recreate the application
with React Native. They put together a proposal for a senior design project at Iowa State so
students could help make this transition. A React Native application can solve all of these
problems. With React Native, the JS code can be translated into Native code for both IOS
and Android. There only needs to be one application, and this means that drastically cut
the amount of resources needed to maintain and update the application. In addition,
Javascript and component-based programming is a far more common skill. This means
that more developers will be able to understand the code better, and begin working on the
project much faster. Furthermore, by transitioning into React components, the project
code base will be much cleaner. Reusing and managing components makes for a more
efficient and maintainable development process.

1.3 OPERATING ENVIRONMENT

This is a mobile application, and the main user are construction workers. This means the
environment that the application will be used in may vary greatly. Because these
construction sites are sometimes in remote locations that may have poor internet
connection, the efficiency of the application is key. It is also possible that the users may
not always have direct access to the device itself. This is in part due to the nature of the
industry. With massive amounts manual labor being done on-site, it may not be safe or
viable for them to be on their phone actively checking the application. Likewise,
construction sites are not the only place the application will be used. The application is
used by many project managers off-site or in an office setting. This means that it will be
used in places with more predictable conditions. Therefore, the application needs to
perform consistently and serve as a productive tool for the construction industry.

Overall, there does not to seem to be any direct safety hazards, other than the general
dangers of using a mobile device (ie texting and driving). When it comes to using this

SDMAY19-02 5

application, the environment may impact the quality of the product. For this reason we
must consider the variety of uses and environments the application will be subjected to.

1.4 INTENDED USERS AND INTENDED USES

There are a multitude of different types of users that will be working with the application.
These include:

● Construction Managers - These are the people who will be working with projects,
but also have capabilities that the average user may not have.

● Construction Workers - Probably the most common users. They will have less
access than the managers.

● Clients - People who payed for the construction job. They are able to track their
jobs and request changes.

● Sales Employees - They will be able to track the projects that they are assigned to.
They will also have access to internal features.

● Developers - Buildertrend Developers will also have access to the application. They
will have their own specific features to oversee the product.

The construction managers use of the application will be both to manage the project and
to manage the people under them. These uses will be to keep the construction projects on
schedule and to make sure employees are up to speed on project expectations. The
workers themselves will be able to use the app to handle tasks they have completed, clock
in to work, and be in contact with the manager. In addition, the construction managers
will be able to use the application to track leads and handle financial issues.

The client's main use of the application will be to oversee the progress of their project(s).
They are also able to contact the construction manager if regarding any inquires about
change orders. They should also be should also be capable of communicating fluidly with
the project manager in case any legal agreements documents require a signature.

Sales employees will be able to use the application to track their project managers and
make sure that they are not having any issues with the application. Above the sales team,
the developers will have access to virtually any functionality. This is to account for any
testing and adjustments they may want to explore.

1.5 ASSUMPTIONS AND LIMITATIONS

● Assumptions
○ Users will have access to a mobile device.
○ The primary user will be construction managers and workers.
○ The backend of the application, which will not be provided to us, will

handle all security measures.
○ The backend will handle any financial transactions or legal transactions

between the builder and clients.
○ The backend will give us data in an efficient and clean way.

SDMAY19-02 6

○ The backend of the application will handle all the accepted different file
extensions.

○ No one has access to the backend code besides us and employees of
Buildertrend.

○ All margins and styles will be standard to cell phones.
○ Code will be tested by the QA at Buildertrend.

● Limitations
○ The speed of the product relies on the phone it is on and some old phones

may not handle the software as well.
○ Usage of the application depends on solid connection to the internet.
○ Many of the developers in our groups do not have much experience with

React, Redux, and some other tools.
○ Clients pay a lot of money to use the product, so the product must be at a

high standard.
○ The product must be completed by the end of the second semester.
○ The functionality of the application must match the functionality of the

current application.

1.6 EXPECTED END PRODUCT AND OTHER DELIVERABLES

Throughout the semester, we will have various documents completed throughout the
development cycle that will be minor deliverables. Some of these delivered items will
include weekly reports, schedules, and documentation. Moreover, our main deliverables
will be as follow:

● Initial Prototype - This will be a fully functioning React Native project. It will have
a functioning menu, and the user will be able to pull up the list of components.
There may be a few subcomponents completed, but the main purpose is to
establish user movement throughout the application. This will layout the
foundation for the following deliverables and will serve as a framework for further
development.

● Structured Prototype - This deliverable will be a project management software
with the the core features implemented. It will not be a completed version of the
initial prototype but rather a partially filled version. It will have all the same
functionality and structure, but some of the components will still require
completion. In order to fill the necessary features the components within the
existing application will be ordered by priority.

● Final Prototype - This is the final product that we will produce for Buildertrend,
upgrading it from the structured prototype, it will have all the features the original
application has. We will have all the existing components built out and fully
functioning. There is potential that we may add new features as the client and us
see fit.

SDMAY19-02 7

● Documentation - This will be the API for the public functions that we use while
making the product. This will be used for the people who will be working on the
project in the future. It is also be used for developers at the company who may
have questions about the application.

We estimate completion and delivery of this project to be May 2019, the end of the Spring
2019 semester.

2 Proposed Approach and Statement of Work

2.1 OBJECTIVE OF THE TASK

The desired outcome for the end of this project is to have a smooth application running on
both Android and IOS that hits on all of the functional requirements, nonfunctional
requirements, and deliverables.

The internal aspects of this task is to completely recreate two applications using React
Native, a newer technology. By successfully merging two different projects into one, we
are helping Buildertrend eliminate an unnecessary project. By having both Android and
IOS devices using the same application, it ensure that all the features are uniformly
applicable across the entire user base.

After this is complete, every construction manager that utilizes this industry leading
software will be able to accurately and successfully construct their guzzling projects.

2.2 FUNCTIONAL REQUIREMENTS

Our application will have different levels of clearance per the user. As typical each user
will have an account to log into. This will be handled on the backend by buildertrend.
They will then have access to all or some of the following features:

- Project Management Section
- Daily Logs
- To-Do’s
- Schedules

- Month
- Agenda
- List
- Gantt
- Workday Exceptions
- Add Schedule Task

- Change Orders
- Add change order
- Edit change order
- Search change order

SDMAY19-02 8

- Selections
- Selection viewers
- Add Selection
- Search Selections
- Allowance viewer
- Add Allowance

- Warranty
- Add Warranty
- Warranty viewer
- Search Warranty

- Job Info
- Add Job

- Template Information
- What to Copy
- Jobsite information
- Contact Info

- Job Info Tab
- Owner Info
- View Access

- Quick Actions
- Add Photo
- Add Daily Log
- Add To-Do
- Add Message
- Add Document

- Files
- Photos

- Create albums
- upload Photos

- Documents
- Create Folder
- upload Document
- Search Documents

- Videos
- Create Folder
- Search Videos
- upload Video

- Messaging
- Comments

- Add comment
- View Comments
- Search Comments

- Messages
- Add folder

SDMAY19-02 9

- Create message
- Financial

- Budget
- Budget Table View
- Category View
- Budget Search

- Bills/POs
- Bill/POs Viewer
- Search
- payment
- Add Bills/PO’s

- Owner Payments
- Search Payment
- Payment Viewer
- Add Payment

- Bids
- Bid Viewer
- Add Bids

- Directory
- Contacts

- Contact viewer
- Contact Search

- Subs
- Sub List
- Sub Search
- Sub Details/Edit

- Internal Users
- Internal Users List
- User Search
- User Details/Edit

- Directory
- Directory Search
- Directory List
- Directory User Details

- Sales
- Lead Opportunity

- Lead Opportunity List
- Lead Opportunity Search
- Lead Opportunity Details/Edit

- General
- Proposals
- Activities

- Activities
- Details

SDMAY19-02 10

- Attached Email
- Lead Activities (same as Lead Opportunities)

- Misc
- Reminders
- Contact Us
- Settings
- Logout
- Full Site

2.3 CONSTRAINTS CONSIDERATIONS

The non-functional requirements of our product include:

● Responsive: The mobile application should be user friendly by providing quicker
results and reduce lags.

● Reliability: The mobile application should be reliable regardless of network
connections because some of the users might not be internet connected.

● Energy efficient: The application should be energy efficient because some of the
users might be in remote locations with limited power supply.

● Security: The application contains user data so security measures should be taken.
Some of these include authentication, authorization and encryption.

● Performance: The application is expected to have close-to real-time results so it
should be performant/efficient with handling such user requests.

● Availability: The application should be available at any point as long as the phone
is active.

● Maintainability: The application is to be built in a modular way using a
component architecture to make it easily maintainable

● Data Integrity: The application is to be built taking data integrity by displaying
and sending accurate data and maintaining consistency.

● Usability: The application should be user-friendly and easy to use without a
detailed explanation of how the application works.

The constraints that are we considering in this project are as follows:

● Human Resources: Our team is a fixed sized team with certain members having
their own strengths. In addition to classes all of us are working jobs on the side.
The balance between school and work will be essential throughout the semester.

● Technical: Our client has already chosen the technology they want the product to
be developed with - which is React Native.

● Time: The product must be completed before the final presentation of the Senior
Design class.

While developing this project, we will be following the IEEE Ethics and Compliance which
includes the IEEE Code of Conduct and IEEE Code of Ethics. These standards, in

SDMAY19-02 11

summary, describe ethical rules that should be followed in the development process and
with the product developed. These standards are applicable to our project because we are
developing a mobile application that will be used by a variety of users. It can be broadly
categorized into:

- While developing this project, team members have to respectful of each other.
- The product should not be harmful to the users

2.4 PREVIOUS WORK AND LITERATURE

2.4.1 Existing Works

Our project is focused around the development of an application using react
native. There are some applications that provide similar functionality, but the
focus of the project is to rebuild the application using a new framework. The work
we are providing is for employees of buildertrend to continue the development of
their application. Platforms that provide a similar solution to react native include
apache cordova and google’s flutter. Google’s flutter does much of the same things
as react native but since it is in its infancy the stability of the product is not as high
as react native. Apache cordova uses a different strategy for making native code. It
wraps web apps in a browser container and packages it as a mobile app. This
makes the performance much less efficient.

2.4.2 Relevant Literature

As of now we do not currently have an official literature or assigned readings. As
the project progresses we plan to be learning various new tools and technologies.
In order to obtain this information we will be reading the corresponding
documentation.

In addition to documentation we will be reading various information from places
such as github, stackoverflow and other online platforms. This will help us
understand what the current techniques and approaches are for solving issues that
we come across.

2.5 PROPOSED DESIGN

We have a unique project because the application we are building already exists. Our job
is to remake the application using a new framework. Thus, the design for most of our
application (especially the UI design) is already complete. Our project consists of creating
the new react native code base and recreating the components found in the buildertrend
application. We are not responsible for creating any backend code. This leaves the
underlying architecture design to us along with design aspects relating to communicating
with Buildertrend’s API.

SDMAY19-02 12

FIGURE 1: PRINCIPLES OF COMPONENT BASED ARCHITECTURE

Our strategy for the architecture include using a component based architecture and using
a central store to save the application state. Also, instantiating an interface for API calls. A
component based architecture allows the pieces of functionality to be replaceable,
independent, reusable, extensible, and not context specific. This will make our code DRY
and easily modifiable. One of the motivations for this project to being with is having a
code base that is used for the development of both ios and android. Having a component
based architecture will ensure modifiability of a unified code base.

The other strategy for the application design is using a central store to store global state
variables. User data used across multiple components can be shared in the central store.
Each component would not need to make requests for the same data which cut down on
redundant API calls. Also, when a component needs to make an API call, the values of the
call may depend on a value set by a different component. Instead of relating these two
components, the value can be accessed from the central store reducing cohesion and
satisfying the properties of the component architecture.

The API communication interface will provide all functionality for making calls to the API.
This design construction reduces repeated code by providing functions for the API routes
with the ability for components to pass in their own parameters again making the code
base DRY. This component will have access to the central store for any parameters that
come from the state of the application.

SDMAY19-02 13

In the functional requirements section, we details all aspects of the application that needs
to be implemented. Many of the modules can be instantiated with the same components.
For example, the search feature is common for many modules within the app. We will
create one search component that can be used in each of the modules. The functionality of
the component will replicate that of the original application.

2.6 TECHNOLOGY CONSIDERATIONS
● TypeScript - We picked TypeScript as the language used for development instead

of JavaScript. One of the reasons we picked TypeScript it because it is a typed
language which will help in avoiding tricky bugs; it also has other feature
languages that don’t need a transpiler like JavaScript would (besides the
TypeScript transpiler itself). One weakness of TypeScript is that there might be
some time spent in learning the language instead of actual development.

● NPM - we are using npm and yarn as our package manager. We use yarn primarily
for package managing because it has a lock file that will help us manage
dependencies across all our systems. npm does offer a lockfile now but we decided
to go with yarn because of its reputation for speed.

● Postman - we are using postman to get the HTTP request used by the existing
mobile application to get HTTP routes to the server. Some of the alternatives were
Charles and Fiddler, but we went with postman because most of the team is
familiar with Postman and it is more user-friendly.

● React Native - The client has requested we use React Native. The alternatives to
this include flutter, iconic, and xamarin. The client already chose the technology
we should use so it wasn’t considered by us. One of the strengths is the popularity
it has compared to the alternatives

● Expo - Expo is a tool for mobile development. Normally, an alternative would be to
use this instead of react native but we were able to use both for even more efficient
development.

● React-Devtools Debugger - We use this for debugging React Components.
Alternatives include the IDE debugger, and the mobile’s inspector. We chose
React-Devtools because it was made specifically for React/React Native so it is
geared towards what we are developing and has some specific features to React
Native.

● Redux - We are using redux for state management within the mobile application.
Other alternatives were flux, and mobx. We chose redux because it was more
popular and easier to understand. Flux offered almost no advantages. Some of our
team members were also acquainted with redux so we picked it over mobx. One of
the weaknesses/trade-offs with redux is the boilerplate that has to be done before
the project can be started.

SDMAY19-02 14

● React Router - We are using react router for navigation within the application.
One of the strengths of this is the efficient management of navigation which
doesn’t just help us do the work of navigation but also in optimal time. Some
alternatives were react navigation, and react native navigation. React navigation
seemed like a more immature library compared to the other two with some API
constraints. React navigation was a suitable alternative but is was more difficult to
set up and didn’t seem to offer any more or less from what React Router offered.
We went with React Router because of the web-like experience.

● Yarn - we are using npm and yarn as our package manager. We use yarn primarily
for package managing because it has a lock file that will help us manage
dependencies across all our systems. npm does offer a lockfile now but we decided
to go with yarn because of its reputation for speed.

● GitLab - We considered using another remote source control distribution, namely,
github because most of our team was familiar with it, but we decided to go with
GitLab because it was already set up for us, it offered better issue tracking, and
easier code review and enforcements than GitHub. GitHub does offer an easier CI
than Github but we Github for organization wasn’t free.

● Linting - We are using TSLint to ensure code consistency in our project. Other
alternatives include JSLint and ESlint. We picked TSLint because it is made
specifically for TypeScript while the rest of them are geared towards JavaScript.

2.7 SAFETY CONSIDERATIONS

There are very little safety considerations in our project. Due to the nature of our
application being used in construction areas, we have to make sure that the product runs
smoothly and efficiently to ensure that they are not waiting on the frontend of the
application.

We also have to develop in a way that removes any unnatural lighting that could cause
distractions. The safety of the user base is important to Buildertrend, and therefore is
important to us as well.

2.8 TASK APPROACH

With all six people on the team having different class schedules, it is necessary for us to
have a reliable tracking system to ensure that work gets done efficiently without overlap.

The main immediate method we use to help keep track of tasks is the ticketing system
that’s built into the GitLab repository that we are using for the project. This is more of an
agile method.

The method we are using to keep track of the overall plan is a Gantt Chart. We have all the
major milestones laid out for the year so we can see that we are on track to finish.

To see figure, check Figure 2: Semester 1 Gantt Chart and Figure 3: Semester 2 Gantt Chart.

SDMAY19-02 15

2.9 POSSIBLE RISKS AND RISK MANAGEMENT

Title: Lacking Understanding of React Native Framework

Strategy: Avoid

Premise: Coming into this project, most of the team members have not used the react
native framework. Lacking understanding of react may cause slips in schedule and loss in
quality as members take time to grasp react. Estimating the required amount of time for
tasks will be difficult because we have to understanding of our efficiency with react.

Action Plan: Getting as much experience with the framework will give us the best results
if we are able to make more informed guesses and utilize aspects of react that improve
quality. We plan on doing tutorials and reading documentation to understand react
better.

Title: Relying on Phones

Strategy: Mitigate

Premise: React native compiles native code for android and ios phones. In order to run
the application, team members need to use their phones. Relying on phones in the
workflow introduces risks such as not having a working phone, not having a charged
phone and compatibility between the phone and the application. It is possible to create
virtual devices to run the application but this may prove to be difficult.

Action Plan: We will work in groups so that phones can be shared if need be. There will
probably be at least one person with a working phone. Also, we will look into the option of
having virtual devices and the feasibility of this option.

Title: Malformed HTTP Requests

Strategy: Mitigate

Premise: The application we are developing uses the buildertrend backend functionality
through their API. However, we do not have any documentation on the API and therefore
must intercept requests on their app to find out how it is used. Not having access to the
API documentation will cause a lack in understanding and therefore may cause incorrect
or malformed HTTP requests.

Action Plan: Having one person dig deep into the HTTP calls and having a map of what
each does will provide other team members with the knowledge to use them correctly.

SDMAY19-02 16

When Buildertrend’s API doesn’t return what we expected, we can rely on the person who
researched it more closely. Also, we can use our contact at buildertrend to ask questions
about what might be going wrong.

2.10 PROJECT PROPOSED MILESTONES AND EVALUATION CRITERIA

Some key milestones involve an initial prototype, a structured prototype and a finished
product. The initial prototype will include having an app that works on Android and iOS.
This will be the frontend and the skeleton of the product using dummy information. We
will test this by using phone simulators as well as an Expo app that allows us to run the
React Native code on our devices. We will use manual tests as well as testing frameworks
such as jest or enzyme.

The structured prototype will be an improved version of our initial prototype with 75% of
the capabilities required for our product. One of these key capabilities will be pulling
correct information from the Buildertrend servers. We can test this by comparing the
information on our new built app to the old app that they use. We have been given a
dummy account by Buildertrend so we can use this account to test our app. The frontend
should already be working and displaying dummy information correctly at this point so
we will just need to test the new information being provided. This will include manual
tests as well as generated test cases that can compare the expected information with the
information being pulled in.

The last milestone is the finished product. This will be when our app is displaying all the
correct information as well as having our frontend completed. Documentation for our
project will also be completed and ready to turn over to the client. The app should work
on both an Android and an iPhone. We can test our finished products on both devices as
our team has both available to them. We can compare this to the old app and to expected
values as we run manual tests to make sure this is working correctly. We will also be sure
to test with generated test cases as well as testing old tests to make sure that we did not
defect from our code as we were improving upon it.

2.11 PROJECT TRACKING PROCEDURES

To track progress our group has decided to use the GitLab issue tracker. We will use this
to create tickets of key issues that need to be resolved as well as tasks that need to be
completed. As we complete the tasks we will take note of these and continue to follow our
proposed timeline. The tasks will be created to follow our schedule closely and work
towards meeting our milestones and eventually our deliverables. The issues that will be
created will be brought up as problems arise in our code and will be handled and dealt
with accordingly. We will continue to compare our progress with our timeline to stay on
course and have our product finished appropriately.

SDMAY19-02 17

2.12 EXPECTED RESULTS AND VALIDATION

The desired outcome for the end of this project is to have a smooth application running on
both Android and IOS that hits on all of the functional and nonfunctional requirements.
We will ensure this desired outcome happens by staying on track with our Gantt chart and
fulfilling every task that comes this way.

A common stumbling block many teams encounter is unsustainable code. If the repository
gets populated with subpar code, it hinders the scalability of the project. Since this project
is meaningful and actually needs to be maintainable, our team decided to have a strict
code review policy that makes it so at least three other developers have to perform a code
review and approve the code.

With the intense code review in place, it helps maintain scalable code, which helps
ensures that our outcome will be scalable.

We will also have a strong testing procedure that includes manual testing on our phones
using Expo and testing frameworks Jest and Enzyme.

2.13 TEST PLAN

Testing is an important part of developing this application. Our plan and execution
Regression Tests. Regression Tests ensures that ever new line of code doesn’t break any
previous functionality. This will be done by writing test statements for every
functionality.

Enzyme will be used regressively to make sure that every tag is used appropriately for
every component. This ensure that every component renders everything that it is
supposed to, which in turn can check the functionality of separate parts.

3 Project Timeline, Estimated Resources, and Challenges

3.1 PROJECT TIMELINE

Our project timeline has been broken into three phases. These phases are based off of our
milestones which are initial prototype, a structured prototype, and a final product. These
phases take up a duration of the Fall 2018 semester as well as the Spring 2019 semester.
The phases involve implementation of that prototype, testing, and other steps that our
team will take to complete the finished product.

The phases are broken up into two to three month segments with the structured
prototype being the shortest one. This structured prototype will be built off of the initial
prototype and eventually the finished product will be completing the structured prototype
to be packaged and ready to present to the client. We believe creating the basic prototype

SDMAY19-02 18

will take longer as we work to create components to build our app off of. The second
phase will be applying these components to different capabilities of the app. The final
phase will involve documenting our code as well as testing and preparing our software for
the client. Please reference our Gantt charts represented in figure X and X to view the
timeline described below.

Phase 1: Initial Prototype (9/1-10/31)

● Building the skeleton code
● Basic app functionality

○ Basic components
○ Homepage
○ Login page

● Having the app work on iOS and Android
● Testing of app functionality

Phase 2: Structured Prototype (10/31-11/30 & 1/14-2/8)

● Increased app functionality
● Successful compatibility with BT services
● Testing

○ App functionality
○ Compatibility with BT services
○ Regression testing

Phase 3: Final Product (2/9-4/30)

● Finalize app functionality
● Deliverables completed

○ Documentation
● Functional and Non-functional requirements completed
● Testing

○ Functionality
○ Regression testing
○ Requirements

● Packaged and ready to deliver

3.2 FEASIBILITY ASSESSMENT

The application we create should meet the standard of an industry leading company.
Although there are challenges that lay in the way, the application will meet the functional
requirements that was asked of us. This React Native app will solve the companies
problems of maintaining two applications and saving them money and time.

The problems that may occur during the process of getting to this final product include a
handful of things. The first would be the schedules of each individual team member. This

SDMAY19-02 19

is not a full time job, and each developer has to juggle school, their current jobs, and much
more. Our business can interfere with scheduling meeting times with the client or our
advisor. It could also slow down the development process in general. The only way to
complete the project thoroughly and on time will be to keep each other in check.

Some other challenges were presented to us as soon as we received the project. After
meeting with Rich, a developer at Buildertrend, they told us that they would not give us
access to the backend API. This means that our process will be slowed down in order to
find a way to monitor API calls. Another roadblock is the fact that our client is a long
distance from where we are located. If we have a question or something that direly needs
to be discussed, this may be a problem.

The members of our group have different background and different skill sets. Some people
are front end developers, some people are more comfortable with backend, and others
with hardware. This is almost solely a frontend project, so there may be a learning curve
from one member to another. While one person may be ready to coding on the project,
another person may just be dipping their toes into React Native. This is a consideration we
need to discuss when scheduling.

Lastly, the project that we were given is literally the entire Buildertrend mobile
application. This is a project that has been worked on by dozens of developers for years. It
will be a challenge to complete every single component that they have built out for the
previous native apps. The goal of Buildertrend is for us to make an application that they
can take an continue working on once we finish the semester. We would like to complete
all the components, but it will require a lot of effort from all members. Ideally, we would
like there to be little work left for Buildertrend to deploy our project once we are done.

3.3 PERSONNEL EFFORT REQUIREMENTS

This section is a work in progress. We do not have a great grasp one how long these tasks
will take. We also are unsure of how many developers we will need for each phase and
task.

Below lies Table 1, that contains all of the major tasks, with description and estimated
hours necessary for each task.

Task Description Estimated Hours

Understand project Contact with Client, discuss expectations,
and mess around with demo application

20 hours

Research
technologies to use

Researching possible software frameworks
and packages and weight the pros and cons
for each one

30 hours

SDMAY19-02 20

Create initial
application

Create skeleton of React Native App, Inject
Redux into project, install dependencies,
and everything else we agreed on from
researching technologies

15 hours

Set up environment Make sure that the environment is set up
for every device for each team member

10 hours

Research on
software
Architecture

Before we get too far into the project,
settling on an architecture to model the
files is crucial

10 hours

Create Scripts Scripts will help speed up development
process for the future. Scripts to start
application and test

30 hours

Discover API Since we are not given the API for the
backend calls, we have to use another tool,
Postman, to track every API call.

50 hours

List Components to
create

Go through the old application and list out
every possible component and where it is
used.

20 hours

Create Menu and
framework

Having a main infrastructure to help the
user move around the application is
necessary before we get into the big parts

30 hours

Individual
Development

Split up components for each member 150 hours

Weekly Reports Keep track of past week’s work and deploy
them into a report every week

30 hours

Write Tests Create tests that assure correct
functionality and display

50 hours

Code Review Not just developing, but reading other
people’s code before their work is officially
approved into the repository.

100 hours

Project Plan Come together to work on the massive
project plan report

30 hours

Document Software Team members need to document all
software code, architectures used, and
design patterns used.

50 hours

SDMAY19-02 21

Test requirements Test requirements we laid out and address
them if need be

20 hours

Table 1: Major Tasks

3.4 OTHER RESOURCE REQUIREMENTS

Resources outside of financial that are required for this project is hardware to develop this
application. Every team member has to have a computing device that can have access to
the internet and have a text editor. Ideally, the computer will have enough processing
power to run and IDE that is capable of installing NPM packages and running the
application.

Lastly, having a smartphone handy will and can help with the manual testing of this
application.

3.5 FINANCIAL REQUIREMENTS

The tools that we are using are all currently open-source. React Native and Redux were
created by Facebook and can be used freely by the community. There are also tools such
as editors, learning tools, and example projects that are also free to use. The majority of
the softwares are always free for personal use, but if the creators of a tool decide to make it
cost for a business such as Buildertrend to use, we will expect Buildertrend to cover these
costs. There is no exact expected cost, but we are hoping the cost of creating the software
will only cost us time. We are early in the development process, so we can update the cost
as we go if we run into problems. In a regular environment, the cost would include the
work of the developers, but we are working for free.

4 Closure Materials

4.1 CONCLUSION

Updating an an application from pre-existing legacy code is a huge part of software
development in today's technology industry. Many times companies find themselves
wasting resources by having developers rewrite or remake existing applications on
separate platforms.

SDMAY19-02 22

Our project aims to transition two separate native applications into a common React
Native application. This will reduce the cost of upkeep and allow a fluid user experience
across all platforms, saving Buildertrend both time and money.

In order to make this transition as smooth as possible, it will take the collaboration of all
six team members as well continuous communication with our client. Along the way our
academic advisor Mai Zheng will be there as a support system for any questions or
concerns that may come up along the way.

As outlined in this project plan, we will continue to work towards transitioning this
industry leading software to a more up to date technology. By doing this we will not only
improve the efficiency of Buildertrend’s development team, but we will also create a
refined product that extends to home builders around the world. This product will benefit
the likes of Buildertrend, the builders, and their clients alike.

4.2 REFERENCES

Technology:

1) https://www.ieee.org/about/compliance.html
2) https://jestjs.io/
3) https://airbnb.io/enzyme/docs/api/
4) https://redux.js.org/
5) https://medium.freecodecamp.org/8-key-react-component-decisions-cc965db11594
6) https://medium.com/@dbow1234/component-style-b2b8be6931d3
7) https://buildertrend.com/
8) https://www.typescriptlang.org/
9) https://facebook.github.io/react-native/
10) https://expo.io/
11) https://www.npmjs.com/package/react-devtools
12) https://reacttraining.com/react-router/core/guides/philosophy
13) https://yarnpkg.com/en/
14) https://www.getpostman.com/

SDMAY19-02 23

https://jestjs.io/
https://airbnb.io/enzyme/docs/api/
https://redux.js.org/
https://medium.freecodecamp.org/8-key-react-component-decisions-cc965db11594
https://medium.com/@dbow1234/component-style-b2b8be6931d3
https://buildertrend.com/
https://www.typescriptlang.org/
https://facebook.github.io/react-native/
https://expo.io/
https://www.npmjs.com/package/react-devtools
https://reacttraining.com/react-router/core/guides/philosophy
https://yarnpkg.com/en/
https://www.getpostman.com/

4.3 APPENDICES

FIGURE 2: SEMESTER 1 GANTT CHART

FIGURE 3: SEMESTER 2 GANTT CHART

SDMAY19-02 24

